Projects/neural_network_example.py

37 lines
876 B
Python

import torch
import torch.nn as nn
import torch.optim as optim
# Synthetic input and target data
inputs = torch.randn(100, 10) # 100 samples, 10 features each
targets = torch.randn(100, 1) # 100 target values
class TinyModel(nn.Module):
def __init__(self):
super().__init__()
self.layer1 = nn.Linear(10, 5)
self.relu = nn.ReLU()
self.layer2 = nn.Linear(5, 1)
def forward(self, x):
x = self.layer1(x)
x = self.relu(x)
x = self.layer2(x)
return x
model = TinyModel()
loss_fn = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
for epoch in range(200):
outputs = model(inputs)
loss = loss_fn(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 20 == 0:
print(f"Epoch {epoch}: Loss = {loss.item():.4f}")