import numpy as np """ This script demonstrates how to concatenate NumPy arrays using `np.concatenate` for both 1D and 2D arrays. Examples included: - Concatenating two 1D arrays along their only axis. - Concatenating two 2D arrays along axis 0 (rows) and axis 1 (columns). - Combining simulated quarterly sales data for two products across two years by concatenating along columns. Variables: - array1, array2: Example arrays for demonstration. - concatenated_array: Result of concatenating 1D arrays. - concatenated_array_rows: Result of concatenating 2D arrays along rows. - concatenated_array_columns: Result of concatenating 2D arrays along columns. - sales_data_2021, sales_data_2022: Simulated sales data arrays. - combined_sales_by_product: Combined sales data for both years by product. Prints the results of each concatenation operation. """ array1 = np.array([1, 2, 3]) array2 = np.array([4, 5, 6]) # Concatenating 1D arrays along their only axis 0 concatenated_array = np.concatenate((array1, array2)) print(concatenated_array) array1 = np.array([[1, 2], [3, 4]]) array2 = np.array([[5, 6], [7, 8]]) # Concatenating along the axis 0 (rows) concatenated_array_rows = np.concatenate((array1, array2)) print(f'Axis = 0:\n{concatenated_array_rows}') # Concatenating along the axis 1 (columns) concatenated_array_columns = np.concatenate((array1, array2), axis=1) print(f'Axis = 1:\n{concatenated_array_columns}') # Simulated data for quarterly sales of two products in 2021 and 2022 sales_data_2021 = np.array([[350, 420, 380, 410], [270, 320, 290, 310]]) sales_data_2022 = np.array([[370, 430, 400, 390], [280, 330, 300, 370]]) # Concatenate the sales data for both products by columns combined_sales_by_product = np.concatenate((sales_data_2021, sales_data_2022), axis=1) print(f'Combined sales by product:\n{combined_sales_by_product}')